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Abstract
The well-known Lorenz system can be written as ẋ = s(y−x), ẏ = rx−y−xz

and ż = −bz + xy. Here, we study the first integrals of the Lorenz system that
can be described by formal power series. In particular, if s �= 0 and, either
b is not a negative rational number, or b is a negative rational number and
k1b + k2(1 + s) �= 0, for all k1 and k2 non-negative integers with k1 + k2 > 0,
then the Lorenz system has no analytic first integrals in a neighbourhood of the
origin.

PACS numbers: 04.25.Nx, 02.30.Hq, 02.40.−k, 02.40.Ma
Mathematics Subject Classification: 34C05, 34A34, 34C14

1. Introduction

The Lorenz system (see [9]):

ẋ = s(y − x), ẏ = rx − y − xz, ż = −bz + xy, (1)

is a famous dynamical model (see for instance [10]), where x, y and z are real variables; and
s, r and b are real parameters. This system has been intensively investigated as a dynamical
system (see for instance [14]), mainly for studying its strange attractors, the more classical
one appears for the parameter values s = 10, b = 8/3 and r = 28. From the point of view of
integrability it was also intensively studied using different integrability theories (for example,
see [1, 3–7, 12, 13, 15–18]). But in this paper we are interested in its formal power series first
integrals and in its analytical first integrals.

The associated vector field of the Lorenz system is

X = s(y − x)
∂

∂x
+ (rx − y − xz)

∂

∂y
− (bz − xy)

∂

∂z
. (2)

A first integral of system (1) is a non-constant function H = H(x, y, z) satisfying

XH = s(y − x)
∂H

∂x
+ (rx − y − xz)

∂H

∂y
− (bz − xy)

∂H

∂z
= 0.
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Let H1 and H2 be first integrals of the Lorenz system. They are independent if the one-forms
dH1 and dH2 are linearly independent over a full Lebesgue measure subset of the common
definition domain of H1 and H2. By definition, we say that system (1) is integrable if it admits
two-independent first integrals.

The following result due to Poincaré [11] is well-known; for a proof, see for instance [2].
We will use it later on.

Theorem 1. We denote by A the Jacobian matrix of an analytic vector field X(x) at x = 0. If
the eigenvalues λ1, λ2, . . . , λn of A do not satisfy any resonance conditions of the form

n∑
i=1

kiλi = 0, ki ∈ Z
+,

n∑
i=1

ki > 0,

then the vector field X(x) does not have analytic first integrals in a neighbourhood of the
origin.

For a generalization of theorem 1 to a matrix A with a zero eigenvalue see [8]. In this
paper Z

+ denotes the set of non-negative integers.

2. Main results

First we prove the next preliminary result which will be necessary for proving theorem 4.

Proposition 2. Assume that s = 0 and b is not a negative rational. If f = f (x, y, z) is a
formal power series first integral of the Lorenz system (1), then f is a formal power series in
the variable x.

Proof. Let f = f (x, y, z) be a formal power series first integral of system (1) with s = 0.
Then, we can write it as

f =
∑
n�0

fn(y, z)xn =
∑

k,l,n�0

fk,l,ny
kzlxn.

Letting s = 0 in equation (1), we conclude that f satisfies

Xf = (rx − y − xz)
∂f

∂y
− (bz − xy)

∂f

∂z
= 0. (3)

We will proceed by induction and will prove that for any integer N � 0, fN(y, z) is constant
and equal tof0,0,N . This will imply that

f =
∑
n�0

fn(y, z)xn =
∑
n�0

f0,0,nx
n = f (x),

which obviously will finish the proof of the proposition.
We start by proving that f0(y, z) = f0,0,0. To do it, let x = 0 in (3). Then, since

f0(y, z) =
∑
k,l�0

fk,l,0y
kzl,

we have

−
∑
k,l�0

kfk,l,0y
kzl − b

∑
k,l�0

lfk,l,0y
kzl = 0,

which yields ∑
k,l�0

(k + bl)fk,l,0y
kzl = 0. (4)
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Since by hypothesis b is not a negative rational, we have that k + bl �= 0 for all k, l � 0
with k + l � 1. Then, from (4) we have fk,l,0 = 0 for all k, l � 0 and k + l � 1. That is,
f0(y, z) = f0,0,0. So, the hypothesis of induction is proved for N = 0.

Now, we assume that it is true for N − 1 (i.e. f = ∑N−1
n=0 f0,0,nx

n +
∑

n�N fn(y, z)xn),
and we will prove it for N. Clearly, by the induction hypothesis,

f =
N−1∑
k=0

f0,0,kx
k + xN

∑
k,l�0,n�N

fk,l,ny
kzlxn−N .

Then, using this form of f and computing the terms in (3) of degree N in x, we obtain

−
∑
k,l�0

kfk,l,Nykzl − b
∑
k,l�0

lfk,l,Nykzl = 0.

Then, using the same arguments as in the case N = 0, it follows that fk,l,N = 0 for all k, l � 0
and k + l � 1. Then, fN(y, z) = f0,0,N . Thus, by the induction process the proposition is
proved. �

The main results of this paper are the following ones.

Proposition 3. If s = 0 then the Lorenz system (1) is integrable with the two first integrals

H1 = x and H2 = F1(x, y, z) exp

(
−2 arctan

F2(x, y, z)

F3(x)

)
, (5)

where

F1 = x(r2x3 − (1 + b)rx2y + bxy2 + x3y2 + b(b − 1)rxz

− 2rx3z − b(b − 1)yz + (1 − b)x2yz + bxz2 + x3z2),

F2 = (b − 1)(rx − y) + (b + 1)xz − 2x2y

(b + 1)((r − z)x − y)F3(x)
,

F3 =
√

4(b + x2)

(b + 1)2
− 1.

Proof. It is clear that the functions H1 and H2 are linearly independent, and that H1 is a first
integral of the Lorenz system. Now, a tedious computation (easy to do with the help of an
algebraic manipulator such as maple or mathematica) shows that if X is the Lorenz vector
field with s = 0, then H2 satisfies XH2 = 0, consequently H2 is a first integral of the Lorenz
system with s = 0. Hence, the proof of the proposition is complete. �

Now we will study the case s �= 0. Since s is a parameter of the system, we can think of
system (1) as the following system in the four variables x, y, z, s:

ẋ = s(y − x), ẏ = rx − y − xz, ż = −bz + xy, ṡ = 0. (6)

A non-constant function f = f (x, y, z, s) is a first integral of system (6) if

s(y − x)
∂f

∂x
+ (rx − y − xz)

∂f

∂y
+ (−bz + xy)

∂f

∂z
= 0. (7)

Note that a function f = f (s) different from a constant is a first integral of system (6), but it
is not a first integral of the Lorenz system (1).

A formal first integral of the Lorenz system (1) is a non-constant formal power series f

which satisfies that Xf = 0, where X is the vector field (2).
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Theorem 4. Suppose that s �= 0 and b is not a negative rational. If f = f (x, y, z, s)

is a formal power series first integral of system (6), then f is a formal power series in the
variable s.

Proof. We assume that f = f (x, y, z, s) is a formal power series first integral of system
(6). We can think f as a power series in the variable s with coefficients power series in the
variables x, y and z. Then, f (x, y, z, 0) is a formal power series first integral of the Lorenz
system (1) with s = 0. Since now we are in the assumptions of proposition 2, we can apply
it and get that really f (x, y, z, 0) = h(x), i.e., f (x, y, z, 0) is a formal power series which
is only a function of x. Therefore, since f = f (x, y, z, s) is a formal power series in its
variables, we always can write f = h + sg, where h = h(x) and g = g(x, y, z, s) is a formal
power series in its variables. Then, since f is a first integral, it satisfies (7). So, after dividing
by s the functions h and g satisfy the equation

(y − x)

[
dh

dx
+ s

∂g

∂x

]
+ (rx − y − xz)

∂g

∂y
+ (−bz + xy)

∂g

∂z
= 0. (8)

Now, we write g = g(x, y, z, 0) and restrict equation (8) to s = 0. Then, we get

(y − x)
dh

dx
+ (rx − y − xz)

∂g

∂y
+ (−bz + xy)

∂g

∂z
= 0. (9)

Evaluating (9) on the points of the curve

(x, y, z) =
(

x,
brx

b + x2
,

rx2

b + x2

)
,

which satisfy rx − y − xz = −bz + xy = 0, we have that (9) has the form
x

b + x2
(br − b − x2)

dh

dx
= 0,

which clearly implies dh/dx = 0; i.e. h is a constant and we write h = h(0). Therefore, (9)
becomes

(rx − y − xz)
∂g

∂y
+ (−bz + xy)

∂g

∂z
= 0.

Hence, g is a formal power series first integral of system (1) with s = 0, and by assumptions
additionally we have that b is not a negative rational. So, from proposition 2, we obtain
that g = g(x, y, z, 0) = g(x). Consequently, we have that g = g(x) + sR, where R =
R(x, y, z, s) is a formal power series in its variables. Then, f = h(0) + sg(x) + s2R. Using
that f satisfies (7), we get the equation

(y − x)

[
dg

dx
+ s

∂R

∂x

]
+ (rx − y − xz)

∂R

∂y
+ (−bz + xy)

∂R

∂z
= 0

i.e., g and R satisfy (8) replacing h by g and g by R. The same arguments used for h and g

imply now that g = g(0) and R = R(x)+sS(x, y, z, s). Repeating this procedure inductively,
we get that f = f (s), which ends the proof of the theorem. �

From theorem 4 we get immediately the following result for the Lorenz system:

Corollary 5. Suppose that s �= 0 and b is not a negative rational. Then, the Lorenz system
(1) has no formal power series first integrals. In particular, it has no analytic first integrals in
a neighbourhood of the origin.

Of course, if s �= 0 and b is not a negative rational, then a global analytic first integral
of the Lorenz system defined in R

3 cannot exist, because in particular it must exist in a
neighbourhood of the origin and this is in contradiction with corollary 5.
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Corollary 6. Suppose that s �= 0 and b satisfies the non-resonance condition

k1b + k2(1 + s) �= 0, for all k1, k2 ∈ Z
+ with k1 + k2 > 0.

Then, the Lorenz system (1) does not have any analytic first integrals in a neighbourhood of
the origin.

Proof. Note that the origin is a singular point for the Lorenz system. If s �= 0 and b �= 0, then
the corresponding eigenvalues are

λ1 = −b, λ2,3 = − 1
2 (1 + s ±

√
(1 − s)2 + 4rs),

and all are different from zero. Now, suppose that there exist k1, k2 and k3 non-negative
integers such that k1 + k2 + k3 > 0 and k1λ1 + k2λ2 + k3λ3 = 0. If in this last equality we
only want that the parameters b and s should appear as in the statement of theorem 4, then we
must choose k2 = k3. Hence, that equality becomes k1b + k2(1 + s) = 0. So, by theorem 1, it
follows the corollary. �

Either corollary 5 or corollary 6 is not included because both conclusions are actually
very similar, but assumptions differ. Thus, for instance, if

s = −1 − k1

k2
b �= 0,

with k1, k2 ∈ Z
+, k1 + k2 > 0 and b is different from a negative rational number, corollary 5

holds, but corollary 6 cannot be applied.
On the other hand, if s �= 0, b is a negative rational and k1b + k2(1 + s) �= 0, for all

k1, k2 ∈ Z
+ with k1 + k2 > 0, then corollary 6 holds, but corollary 5 cannot be applied.
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