Formal and analytic integrability of the Lorenz system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2005 J. Phys. A: Math. Gen. 382681
(http://iopscience.iop.org/0305-4470/38/12/010)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.66
The article was downloaded on 02/06/2010 at 20:06

Please note that terms and conditions apply.

Formal and analytic integrability of the Lorenz system

Jaume Llibre ${ }^{1}$ and Clàudia Valls ${ }^{2}$
${ }^{1}$ Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
${ }^{2}$ Departamento de Matemática, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
E-mail: jllibre@mat.uab.es and cvalls@math.ist.utl.pt

Received 24 September 2004, in final form 18 January 2005
Published 9 March 2005
Online at stacks.iop.org/JPhysA/38/2681

Abstract

The well-known Lorenz system can be written as $\dot{x}=s(y-x), \dot{y}=r x-y-x z$ and $\dot{z}=-b z+x y$. Here, we study the first integrals of the Lorenz system that can be described by formal power series. In particular, if $s \neq 0$ and, either b is not a negative rational number, or b is a negative rational number and $k_{1} b+k_{2}(1+s) \neq 0$, for all k_{1} and k_{2} non-negative integers with $k_{1}+k_{2}>0$, then the Lorenz system has no analytic first integrals in a neighbourhood of the origin.

PACS numbers: $\quad 04.25 . \mathrm{Nx}, 02.30 . \mathrm{Hq}, 02.40 .-\mathrm{k}, 02.40 . \mathrm{Ma}$
Mathematics Subject Classification: 34C05, 34A34, 34C14

1. Introduction

The Lorenz system (see [9]):

$$
\begin{equation*}
\dot{x}=s(y-x), \quad \dot{y}=r x-y-x z, \quad \dot{z}=-b z+x y, \tag{1}
\end{equation*}
$$

is a famous dynamical model (see for instance [10]), where x, y and z are real variables; and s, r and b are real parameters. This system has been intensively investigated as a dynamical system (see for instance [14]), mainly for studying its strange attractors, the more classical one appears for the parameter values $s=10, b=8 / 3$ and $r=28$. From the point of view of integrability it was also intensively studied using different integrability theories (for example, see $[1,3-7,12,13,15-18])$. But in this paper we are interested in its formal power series first integrals and in its analytical first integrals.

The associated vector field of the Lorenz system is

$$
\begin{equation*}
X=s(y-x) \frac{\partial}{\partial x}+(r x-y-x z) \frac{\partial}{\partial y}-(b z-x y) \frac{\partial}{\partial z} . \tag{2}
\end{equation*}
$$

A first integral of system (1) is a non-constant function $H=H(x, y, z)$ satisfying

$$
X H=s(y-x) \frac{\partial H}{\partial x}+(r x-y-x z) \frac{\partial H}{\partial y}-(b z-x y) \frac{\partial H}{\partial z}=0 .
$$

Let H_{1} and H_{2} be first integrals of the Lorenz system. They are independent if the one-forms $\mathrm{d} H_{1}$ and $\mathrm{d} \mathrm{H}_{2}$ are linearly independent over a full Lebesgue measure subset of the common definition domain of H_{1} and H_{2}. By definition, we say that system (1) is integrable if it admits two-independent first integrals.

The following result due to Poincaré [11] is well-known; for a proof, see for instance [2]. We will use it later on.

Theorem 1. We denote by A the Jacobian matrix of an analytic vector field $X(x)$ at $x=0$. If the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of A do not satisfy any resonance conditions of the form

$$
\sum_{i=1}^{n} k_{i} \lambda_{i}=0, \quad k_{i} \in \mathbb{Z}^{+}, \quad \sum_{i=1}^{n} k_{i}>0,
$$

then the vector field $X(x)$ does not have analytic first integrals in a neighbourhood of the origin.

For a generalization of theorem 1 to a matrix A with a zero eigenvalue see [8]. In this paper \mathbb{Z}^{+}denotes the set of non-negative integers.

2. Main results

First we prove the next preliminary result which will be necessary for proving theorem 4.
Proposition 2. Assume that $s=0$ and b is not a negative rational. If $f=f(x, y, z)$ is a formal power series first integral of the Lorenz system (1), then f is a formal power series in the variable x.

Proof. Let $f=f(x, y, z)$ be a formal power series first integral of system (1) with $s=0$. Then, we can write it as

$$
f=\sum_{n \geqslant 0} f_{n}(y, z) x^{n}=\sum_{k, l, n \geqslant 0} f_{k, l, n} y^{k} z^{l} x^{n} .
$$

Letting $s=0$ in equation (1), we conclude that f satisfies

$$
\begin{equation*}
X f=(r x-y-x z) \frac{\partial f}{\partial y}-(b z-x y) \frac{\partial f}{\partial z}=0 . \tag{3}
\end{equation*}
$$

We will proceed by induction and will prove that for any integer $N \geqslant 0, f_{N}(y, z)$ is constant and equal to $f_{0,0, N}$. This will imply that

$$
f=\sum_{n \geqslant 0} f_{n}(y, z) x^{n}=\sum_{n \geqslant 0} f_{0,0, n} x^{n}=f(x),
$$

which obviously will finish the proof of the proposition.
We start by proving that $f_{0}(y, z)=f_{0,0,0}$. To do it, let $x=0$ in (3). Then, since

$$
f_{0}(y, z)=\sum_{k, l \geqslant 0} f_{k, l, 0} y^{k} z^{l}
$$

we have

$$
-\sum_{k, l \geqslant 0} k f_{k, l, 0} y^{k} z^{l}-b \sum_{k, l \geqslant 0} l f_{k, l, 0} y^{k} z^{l}=0,
$$

which yields

$$
\begin{equation*}
\sum_{k, l \geqslant 0}(k+b l) f_{k, l, 0} y^{k} z^{l}=0 . \tag{4}
\end{equation*}
$$

Since by hypothesis b is not a negative rational, we have that $k+b l \neq 0$ for all $k, l \geqslant 0$ with $k+l \geqslant 1$. Then, from (4) we have $f_{k, l, 0}=0$ for all $k, l \geqslant 0$ and $k+l \geqslant 1$. That is, $f_{0}(y, z)=f_{0,0,0}$. So, the hypothesis of induction is proved for $N=0$.

Now, we assume that it is true for $N-1$ (i.e. $\left.f=\sum_{n=0}^{N-1} f_{0,0, n} x^{n}+\sum_{n \geqslant N} f_{n}(y, z) x^{n}\right)$, and we will prove it for N. Clearly, by the induction hypothesis,

$$
f=\sum_{k=0}^{N-1} f_{0,0, k} x^{k}+x^{N} \sum_{k, l \geqslant 0, n \geqslant N} f_{k, l, n} y^{k} z^{l} x^{n-N}
$$

Then, using this form of f and computing the terms in (3) of degree N in x, we obtain

$$
-\sum_{k, l \geqslant 0} k f_{k, l, N} y^{k} z^{l}-b \sum_{k, l \geqslant 0} l f_{k, l, N} y^{k} z^{l}=0 .
$$

Then, using the same arguments as in the case $N=0$, it follows that $f_{k, l, N}=0$ for all $k, l \geqslant 0$ and $k+l \geqslant 1$. Then, $f_{N}(y, z)=f_{0,0, N}$. Thus, by the induction process the proposition is proved.

The main results of this paper are the following ones.
Proposition 3. If $s=0$ then the Lorenz system (1) is integrable with the two first integrals

$$
\begin{equation*}
H_{1}=x \quad \text { and } \quad H_{2}=F_{1}(x, y, z) \exp \left(-2 \arctan \frac{F_{2}(x, y, z)}{F_{3}(x)}\right) \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1}=x\left(r^{2} x^{3}-(1+b) r x^{2} y+b x y^{2}+x^{3} y^{2}+b(b-1) r x z\right. \\
& \quad \begin{array}{l}
\left.-2 r x^{3} z-b(b-1) y z+(1-b) x^{2} y z+b x z^{2}+x^{3} z^{2}\right)
\end{array} \\
& F_{2}=\frac{(b-1)(r x-y)+(b+1) x z-2 x^{2} y}{(b+1)((r-z) x-y) F_{3}(x)} \\
& F_{3}=\sqrt{\frac{4\left(b+x^{2}\right)}{(b+1)^{2}}-1}
\end{aligned}
$$

Proof. It is clear that the functions H_{1} and H_{2} are linearly independent, and that H_{1} is a first integral of the Lorenz system. Now, a tedious computation (easy to do with the help of an algebraic manipulator such as maple or mathematica) shows that if X is the Lorenz vector field with $s=0$, then H_{2} satisfies $X H_{2}=0$, consequently H_{2} is a first integral of the Lorenz system with $s=0$. Hence, the proof of the proposition is complete.

Now we will study the case $s \neq 0$. Since s is a parameter of the system, we can think of system (1) as the following system in the four variables x, y, z, s :
$\dot{x}=s(y-x), \quad \dot{y}=r x-y-x z, \quad \dot{z}=-b z+x y, \quad \dot{s}=0$.
A non-constant function $f=f(x, y, z, s)$ is a first integral of system (6) if

$$
\begin{equation*}
s(y-x) \frac{\partial f}{\partial x}+(r x-y-x z) \frac{\partial f}{\partial y}+(-b z+x y) \frac{\partial f}{\partial z}=0 \tag{7}
\end{equation*}
$$

Note that a function $f=f(s)$ different from a constant is a first integral of system (6), but it is not a first integral of the Lorenz system (1).

A formal first integral of the Lorenz system (1) is a non-constant formal power series f which satisfies that $X f=0$, where X is the vector field (2).

Theorem 4. Suppose that $s \neq 0$ and b is not a negative rational. If $f=f(x, y, z, s)$ is a formal power series first integral of system (6), then f is a formal power series in the variable s.

Proof. We assume that $f=f(x, y, z, s)$ is a formal power series first integral of system (6). We can think f as a power series in the variable s with coefficients power series in the variables x, y and z. Then, $f(x, y, z, 0)$ is a formal power series first integral of the Lorenz system (1) with $s=0$. Since now we are in the assumptions of proposition 2 , we can apply it and get that really $f(x, y, z, 0)=h(x)$, i.e., $f(x, y, z, 0)$ is a formal power series which is only a function of x. Therefore, since $f=f(x, y, z, s)$ is a formal power series in its variables, we always can write $f=h+s g$, where $h=h(x)$ and $g=g(x, y, z, s)$ is a formal power series in its variables. Then, since f is a first integral, it satisfies (7). So, after dividing by s the functions h and g satisfy the equation

$$
\begin{equation*}
(y-x)\left[\frac{\mathrm{d} h}{\mathrm{~d} x}+s \frac{\partial g}{\partial x}\right]+(r x-y-x z) \frac{\partial g}{\partial y}+(-b z+x y) \frac{\partial g}{\partial z}=0 . \tag{8}
\end{equation*}
$$

Now, we write $\bar{g}=g(x, y, z, 0)$ and restrict equation (8) to $s=0$. Then, we get

$$
\begin{equation*}
(y-x) \frac{\mathrm{d} h}{\mathrm{~d} x}+(r x-y-x z) \frac{\partial \bar{g}}{\partial y}+(-b z+x y) \frac{\partial \bar{g}}{\partial z}=0 \tag{9}
\end{equation*}
$$

Evaluating (9) on the points of the curve

$$
(x, y, z)=\left(x, \frac{b r x}{b+x^{2}}, \frac{r x^{2}}{b+x^{2}}\right)
$$

which satisfy $r x-y-x z=-b z+x y=0$, we have that (9) has the form

$$
\frac{x}{b+x^{2}}\left(b r-b-x^{2}\right) \frac{\mathrm{d} h}{\mathrm{~d} x}=0
$$

which clearly implies $\mathrm{d} h / \mathrm{d} x=0$; i.e. h is a constant and we write $h=h(0)$. Therefore, (9) becomes

$$
(r x-y-x z) \frac{\partial \bar{g}}{\partial y}+(-b z+x y) \frac{\partial \bar{g}}{\partial z}=0
$$

Hence, \bar{g} is a formal power series first integral of system (1) with $s=0$, and by assumptions additionally we have that b is not a negative rational. So, from proposition 2, we obtain that $\bar{g}=g(x, y, z, 0)=\bar{g}(x)$. Consequently, we have that $g=\bar{g}(x)+s R$, where $R=$ $R(x, y, z, s)$ is a formal power series in its variables. Then, $f=h(0)+s \bar{g}(x)+s^{2} R$. Using that f satisfies (7), we get the equation

$$
(y-x)\left[\frac{\mathrm{d} \bar{g}}{\mathrm{~d} x}+s \frac{\partial R}{\partial x}\right]+(r x-y-x z) \frac{\partial R}{\partial y}+(-b z+x y) \frac{\partial R}{\partial z}=0
$$

i.e., \bar{g} and R satisfy (8) replacing h by \bar{g} and g by R. The same arguments used for h and g imply now that $\bar{g}=g(0)$ and $R=\bar{R}(x)+s S(x, y, z, s)$. Repeating this procedure inductively, we get that $f=f(s)$, which ends the proof of the theorem.

From theorem 4 we get immediately the following result for the Lorenz system:
Corollary 5. Suppose that $s \neq 0$ and b is not a negative rational. Then, the Lorenz system (1) has no formal power series first integrals. In particular, it has no analytic first integrals in a neighbourhood of the origin.

Of course, if $s \neq 0$ and b is not a negative rational, then a global analytic first integral of the Lorenz system defined in \mathbb{R}^{3} cannot exist, because in particular it must exist in a neighbourhood of the origin and this is in contradiction with corollary 5.

Corollary 6. Suppose that $s \neq 0$ and b satisfies the non-resonance condition

$$
k_{1} b+k_{2}(1+s) \neq 0, \quad \text { for all } \quad k_{1}, k_{2} \in \mathbb{Z}^{+} \quad \text { with } \quad k_{1}+k_{2}>0
$$

Then, the Lorenz system (1) does not have any analytic first integrals in a neighbourhood of the origin.

Proof. Note that the origin is a singular point for the Lorenz system. If $s \neq 0$ and $b \neq 0$, then the corresponding eigenvalues are

$$
\lambda_{1}=-b, \quad \lambda_{2,3}=-\frac{1}{2}\left(1+s \pm \sqrt{(1-s)^{2}+4 r s}\right)
$$

and all are different from zero. Now, suppose that there exist k_{1}, k_{2} and k_{3} non-negative integers such that $k_{1}+k_{2}+k_{3}>0$ and $k_{1} \lambda_{1}+k_{2} \lambda_{2}+k_{3} \lambda_{3}=0$. If in this last equality we only want that the parameters b and s should appear as in the statement of theorem 4 , then we must choose $k_{2}=k_{3}$. Hence, that equality becomes $k_{1} b+k_{2}(1+s)=0$. So, by theorem 1 , it follows the corollary.

Either corollary 5 or corollary 6 is not included because both conclusions are actually very similar, but assumptions differ. Thus, for instance, if

$$
s=-1-\frac{k_{1}}{k_{2}} b \neq 0
$$

with $k_{1}, k_{2} \in \mathbb{Z}^{+}, k_{1}+k_{2}>0$ and b is different from a negative rational number, corollary 5 holds, but corollary 6 cannot be applied.

On the other hand, if $s \neq 0, b$ is a negative rational and $k_{1} b+k_{2}(1+s) \neq 0$, for all $k_{1}, k_{2} \in \mathbb{Z}^{+}$with $k_{1}+k_{2}>0$, then corollary 6 holds, but corollary 5 cannot be applied.

Acknowledgments

The first author is partially supported by a MCYT grant BFM2002-04236-C02-02, and a CIRIT grant number 2001SGR 00173. The second author has been supported by the Portuguese grant FCT/SFRH/BDP/14404/2003, and the Center for Mathematical Analysis, Geometry, and Dynamical Systems, Lisbon.

References

[1] Cairó L and Hua D 1993 Comments on: 'integrals of motion for the Lorenz system' J. Math. Phys. 34 4370-1
[2] Furta S D 1996 On non-integrability of general systems of differential equations Z. Angew Math. Phys. 47 112-31
[3] Giacomini H J, Repetto C E and Zandron O P 1991 Integrals of motion for three-dimensional non-Hamiltonian dynamical systems J. Phys. A: Math. Gen. 24 4567-74
[4] Goriely A 1996 Integrability, partial integrability, and nonintegrability for systems of ordinary differential equations J. Math. Phys. 37 1871-93
[5] Gupta N 1993 Integrals of motion for the Lorenz system J. Math. Phys. 34 801-4
[6] Kús M 1983 Integrals of motion for the Lorenz system J. Phys. A: Math. Gen. 16 689-91
[7] Llibre J and Zhang X 2002 Invariant algebraic surfaces of the Lorenz systems J. Math. Phys. 43 7613-35
[8] Li W, Llibre J and Zhang X 2003 Local first integrals of differential systems and diffeomorphisms Z. Angew Math. Phys. 54 235-55
[9] Lorenz E N 1963 Deterministic nonperiodic flow J. Atmos. Sci. 20 130-41
[10] Lorenz E N 1993 The essence of chaos The Jessie and Jonn Danz Lectures (Seattle, WA: University of Washington Press)
[11] Poincaré H 1891 Sur l'intégration des équations différentielles du premier order et du premier degré I and II Rend. Circolo Mat. Palermo 5 161-91
Poincaré H 1897 Rend. Circolo Mat. Palermo 11 193-239
[12] Schwarz F 1985 An algorithm for determining polynomial first integrals of autonomous systems of ordinary differential equations J. Symbol. Comput. 1 229-33
[13] Segur H 1982 Soliton and the inverse scattering transform Topics in Ocean Physics ed A R Osborne and P Malanotte Rizzoli (Amsterdam: North-Holland) pp 235-77
[14] Sparrow C 1982 The Lorenz Equations (New York: Springer)
[15] Steeb W H 1982 Continuous symmetries of the Lorenz model and the Rikitake two-disc dynamo system J. Phys. A: Math. Gen. 15 389-90
[16] Strelcyn J M and Wojciechowski S 1988 A method of finding integrals for three-dimensional systems Phys. Lett. A 133 207-12
[17] Swinnerton-Dyer P 2002 The invariant algebraic surfaces of the Lorenz system Math. Proc. Camb. Phil. Soc. 132 385-93
[18] Zhang X 2002 Exponential factors and Darbouxian first integrals of the Lorenz system J. Math. Phys. 43 4987-5001

